星球官方号
认证:优质创作者
作者动态
活动来袭,电子技术月刊任你选!
1星期前
#2024.6征文# 关于新能源与光储充技术
2星期前
4月电子技术月刊免费送啦~
05-08 10:54
#关于MCU与SoC我有话说# 征文新玩法!2024.5系统任务发布!
05-08 09:06
愚人节不骗人~3月电子技术月刊免费送啦~
04-01 14:42

【星球号】优质内容汇总(2023.03.06-03.08)

开关电源环路学习笔记3:系统框图

作者:硬件工程师炼成之路

继续学习,继续看书,继续动脑子。

上期回顾:线性化条件

上期已经说明了开关电源满足三个条件之后,可以看成是线性的了,那么这期就来看看开关电源的系统框图。

我一开始就掉进一个坑:系统框图的输入量为什么不是Vi,而是参考电压Vref?参考电压不是固定的吗?也能作为输入?

 反馈控制系统的输入量

我有这个问题,是因为我大学课表里面没有《自动控制原理》,如果学过的话应该就不会有这个问题了。

开关电源是一个自动控制系统,采取的是反馈控制的方式,是一个反馈控制系统。

下面这两段话是教材《自动控制原理》的,我挪过来直接用了……【继续阅读】

分享一种灵活性很高的协议格式(内附代码例子)

作者:嵌入式大杂烩

嵌入式开发中,常常会自定义一些协议格式,比如用于板与板之间的通信、客户端与服务端之间的通信等。

自定义的协议格式可能有很多种,本篇文章我们来介绍一种很常用、实用、且灵活性很高的协议格式——ITLV格式。

什么是ITLV格式?

大家可能看到网络上的很多文章用的是TLV(Tag、Length、Value)格式数据。实际中,可以根据实际需要进行修改。我们这里稍微改一下,实际上也是大同小异的。

我们这里的ITLV各字段的含义:

  • I:ID或Index,用于区分是什么数据。
  • T:Type,代表数据类型,如int、float等。
  • L:Length,表示数据的长度(Value的长度)。
  • V:Value,表示实际的数据。

其中,I、T、L是固定长度的,在制定具体的数据协议之前,需要评估好当前项目的数据会有多少、数据的最大长度是多少,考虑好后续数据扩展也可以保证协议通用。一般I设置为1~2字节,T设置为1字节,L设置为1~4字节。

下面我们制定一个格式……【继续阅读】

MOS管导通和关断过程

作者:开关电源分析

为了更好的理解MOS管的导通和关断过程,我们一般会将电路中的寄生电感忽略掉,下面我们以一个最简单的钳位感应开关模型来说明

对于MOS的导通过程我们可以将其划分为4个阶段:首先第一个阶段为输入电容从0开始充电到Vth,在这个过程中,栅极绝大部分电流都用来给电容CGS充电,也有很小的电流流过电容CGS。当电容CGS的电压增加到门的极限时,它的电压就会有稍微的减小;这个过程称为导通延迟,这是因为此时器件的漏极电流和漏极电压均未发生变化;当栅极电压达到开启电压时,MOSFET处于微导通状态。进入第二个阶段。

在第二个阶段中,栅极电压从Vth上升到Miller平坦区,即VGS。这是器件的线性工作区,电流和栅极电压成正比。在栅极的一侧,电流如第一阶段一样流入电容CGSCGD电容VGS的的电压将会不断升高。在器件的输出端,漏极电流也不断变大,但是漏源电压基本不变,保持先前水平(VDS,OFF )当所有电流都流入MOSFET而且二极管完全截止后,漏极电压必须保持在输出电压水平;这时就进入第三个阶段……【继续阅读】

16位定点 数字信号处理编程的思考

作者:杨帅锅

如果说要在16bit定点环境上使用DSP算法,如IIR构成的2P2Z,会受到定点编程和量化精度的问题。如果说在float32环境上可以很容易进行编程,那切换到定点环境上就不得不得考虑这些问题。通常情况下单精度浮点在小数点后的精度为1/(2^23),理论上使用32位定点IQ24就可以覆盖单精度浮点的精度问题,但是在16bit上,使用i1.q15的方法来算,仅有1/(2^15)的精度,如果直接使用则会遇到量化精度引起的误差问题。那么该如何把浮点切换到16bit的定点来呢,下面将一步一步的来进行讨论。

S1 传递函数离散

离散化:

带入参数,并出归一化的z域传递函数,这里把分母的z^2提出来,然后全部除以其它的数字,即可得到……【继续阅读】

为什么插拔充电器,电池电量会跳变、跌落?

作者:工程师看海

前两天,有个朋友遇到一个问题:为什么插拔充电器,电池电量会跳变

这是个挺有趣的问题,现在我整理出来和大家一起交流分享下。

闲话少说,有多种策略来估计电池电量,最简单粗暴的一种方法就是通过两个串联电阻,使用ADC采集电池电压,进而间接估计电量,这种方法估计精度虽然非常低,但是却简单易实现,如下图所示。

放电时,电流从电池流出见图中红色电流路径,此时A点电压最高,因此A点电压要高于B点电压高于E点电压,这个意思说的是,实际中,ADC采集的电压是E点的电压,这个电压其实是小于电池电压A的,而且受负载电流影响很大(后面会更新文章进行深入介绍)。

而充电时,情况就变的不一样了,充电时,电流是流入电池,电流路径见下图绿色路径。此时B点的电压最高,B点的电压要高于A点和E点的电压。

那么问题就来了!

假如现在电池正处于放电状态,即上图所示,A点电池电压最高。

如果此时突然插入充电器,对电池充电,如下图,那么会使得B点位置的电压突然增加,此时ADC感应到电压突然增加(E位置会随着B位置增加),会判断为电量突然增加,而使得电量跳变,俗称电压反弹或电量反弹……【继续阅读】

声明:本内容为作者独立观点,不代表电子星球立场。未经允许不得转载。授权事宜与稿件投诉,请联系:editor@netbroad.com
觉得内容不错的朋友,别忘了一键三连哦!
赞 2
收藏 3
关注 439
成为作者 赚取收益
全部留言
0/200
成为第一个和作者交流的人吧