前言
本文介绍了设计滤波器的FPGA实现步骤,并结合杜勇老师的书籍中的并行FIR滤波器部分进行一步步实现硬件设计,对书中的架构做了复现以及解读,并进行了仿真验证。
并行FIR滤波器FPGA实现
FIR滤波器的结构形式时,介绍了直接型、级联型、频率取样型和快速卷积型4种。在FPGA实现时,最常用的是最简单的直接型结构。FPGA实现直接型结构的FIR滤波器,可以采用串行结构、并行结构等不同中的结构设计,上文根据书中提供的架构完成了串行 FIR滤波器的实现,本文沿用上文的基本代码结构,按照并行FIR滤波器的架构完成电路描述。
FIR滤波器需求
设计一个15阶(长度为16)的低通线性相位FIR滤波器,采用窗函数设计,截止频率为500 Hz,采样频率为2 000 Hz;采用FPGA实现并行结构的滤波器,系数的量化位数为12比特,输入数据位宽为12比特,输出数据位宽为29比特,系统时钟为16 kHz。
滤波器系数确定与量化
确定滤波器的结构后,就根据滤波器进行设计代码仿真,这里引用书中的仿真设计,并将滤波器参数系数量化。确定滤波器系数的方法有很多,可以使用MATLAB中丰富的函数实现,或者使用相关滤波器设计的软件工具,定制满足当前需求的窗函数的滤波器系数。具体量化系数确定可参考上文《数字信号处理-09-串行FIR滤波器MATLAB与FPGA实现》中的相关内容,或者参考杜勇老师的书中的内容。
硬件架构
下图为杜勇老师的《数字滤波器的MATLAB与FPGA实现》实现的并行FIR滤波器的结构图。因为FIR滤波器参数对称,所以同时计算相应的对称结构的值,将对称系数的X(n)相加后,可调用8个乘法器,完成对滤波器的乘法运算,所以针对并行滤波器的架构数据的输入速率和时钟可以相同,每一个时钟周期流水输出一个滤波后的信号值。图中的8输入的加法器,可以替换成N/2;这样就得到了一个通用化的并行FIR滤波器结构图。
并行FIR滤波器
并行实现FIR滤波器,虽然浪费了加法器和乘法器的资源,但是提升了整个滤波器实现的性能,当滤波器的系数长度N增大时,数据的吞吐速率不变(暂且不考虑面积增大对性能的影响),但带来的坏处就是会用掉相应倍数的逻辑资源和运算资源,速度和面积本来就是鱼和熊掌的关系,在实际应用中应当做相应的权衡和割舍。
根据架构描述电路
根据杜勇老师书中提供的架构,对电路进行描述,同样沿用了前文的通用化的模板,后期可根据参数输入来适配不同滤波器长度的设计。
实现模块框图
接口描述如下:
接口描述
参数描述如下:
参数描述
代码如下:
`timescale 1ns / 1ps
module Fir_Parallel(
input clk,//!系统时钟
input rst,//!复位信号
input signed [SIGN_IN_WIDTH-1:0] signal_in,//!信号输入
output signed [SIGN_OUT_WIDTH-1:0] signal_out//!信号输出,信号输出速度和输入速度相同
);
//
parameter integer SIGN_IN_WIDTH = 12 ;//!信号输入位宽
parameter integer SIGN_OUT_WIDTH = 29 ;//!信号输出位宽
parameter integer FIR_COE_WIDTH = 12 ;//!滤波器系数位宽
parameter integer FIR_COE_NUM = 16 ;//!滤波器长度
localparam integer FIR_WIDTH_DIV_2 = FIR_COE_NUM/2 ;
function [FIR_COE_WIDTH-1:0] coe_data;
input [FIR_WIDTH_DIV_2-1:0] index;
begin
case(index)
'd0:coe_data='h000;
'd1:coe_data='hffd;
'd2:coe_data='h00f;
'd3:coe_data='h02e;
'd4:coe_data='hf8b;
'd5:coe_data='hef9;
'd6:coe_data='h24e;
'd7:coe_data='h7ff;
endcase
end
endfunction
integer i;
genvar j;
//!滤波器系数加载
wire signed [FIR_COE_WIDTH-1:0] coe[FIR_WIDTH_DIV_2-1:0];
generate
for (j=0; j
运行仿真后,根据设计的滤波器系数进行仿真,发现可以正常滤波除去高频分量。
滤波仿真效果
仿真激励文件编写
`timescale 1ns / 1ps
module Fir_Parallel_tb;
// Parameters
localparam integer SIGN_IN_WIDTH = 12;
localparam integer SIGN_OUT_WIDTH = 29;
localparam integer FIR_COE_WIDTH = 12;
localparam integer FIR_COE_NUM = 16;
// Ports
reg clk = 1;
reg rst = 1;
reg [SIGN_IN_WIDTH-1:0] signal_in;
wire [SIGN_OUT_WIDTH-1:0] signal_out;
Fir_Parallel #(
.SIGN_IN_WIDTH(SIGN_IN_WIDTH ),
.SIGN_OUT_WIDTH(SIGN_OUT_WIDTH ),
.FIR_COE_WIDTH(FIR_COE_WIDTH ),
.FIR_COE_NUM (FIR_COE_NUM )
)Fir_Parallel_dut (
.clk (clk ),
.rst (rst ),
.signal_in (signal_in ),
.signal_out ( signal_out)
);
reg [11:0] mem [0:99];
reg [9:0] addr ;
// reg [11:0]data_out ;
always #(10*1)
begin
if(rst==0)
addr = addr + 10'd1;
signal_in = mem[addr][11:0];
end
always
#5 clk = ! clk ;
initial
begin
signal_in =0;
$readmemh("sin_data.txt",mem);
addr = 10'd0;
#10;
rst = 0;
end
endmodule
运行仿真,查看波形可见,滤波效果和仿真结果一致。
仿真波形
延迟分析
该架构的数据输入后,每四个时钟周期后输出一个数据,其中,一个时钟周期用于X(n)的加和,一个时钟周期用于计算信号和滤波器系数相乘的结果,一个时钟周期用于乘法输出后的数据做累加处理,一个时钟用于读取累加后的结果。
延时分析