• 回复
  • 收藏
  • 点赞
  • 分享
  • 发新帖

模拟电路中降低噪声的误区简单分析

噪声是模拟电路设计的一个核心问题,它会直接影响能从测量中提取的信息量,以及获得所需信息的经济成本。遗憾的是,关于噪声有许多混淆和误导信息,可能导致性能不佳、高成本的过度设计或资源使用效率低下。

1. 降低电路中的电阻值总是能改善噪声性能

噪声电压随着电阻值提高而增加,二者之间的关系已广为人 知,可以用约翰逊噪声等式来描述:erms = √4kTRB,其中erms为均方根电压噪声,k为玻尔兹曼常数,T为温度(单位为K),R为电阻值,B为带宽。这让许多工程师得出结论:为了降低噪声,应当降低电阻值。虽然这常常是正确的,但不应就此认定它是普遍真理,因为在有些例子中,较大的电阻反而能够改善噪声性能。举例来说,在大多数情况下,测量电流的方法是让 它通过一个电阻,然后测量所得到的电压。根据欧姆定律V = I ×R,产生的电压与电阻值成正比,但正如上式所示,电阻的约翰逊噪声与电阻值的平方根成正比。由于这个关系,电阻值每提高一倍,信噪比可以提高3 dB。在产生的电压过大或功耗过高之前,此趋势一直是正确的。

2. 所有噪声源的噪声频谱密度可以相加,带宽可以在最后计算时加以考虑

将多个噪声源的噪声频谱密度(nV/√Hz)加总(电压噪声源按平方和开根号),而不分别计算各噪声源的rms噪声,可以节省时间,但这种简化仅适用于各噪声源看到的带宽相同的情况。如果各噪声源看到的带宽不同,简单加总就变成一个可怕的陷阱。图1显示了过采样系统中的情况。从噪声频谱密度看,系统总噪声似乎以增益放大器为主,但一旦考虑带宽,各级贡献的rms噪声其实非常相近。

3. 手工计算时必须包括每一个噪声源

设计时有人可能忍不住要考虑每一个噪声源,但设计工程师的时间是宝贵的,这样做在大型设计中会非常耗时。全面的噪声计算最好留给仿真软件去做。不过,设计人员如何简化设计过程需要的手工噪声计算呢?答案是忽略低于某一阈值的不重要噪声源。如果一个噪声源是主要噪声源(或任何其他折合到同一点的噪声源)的1/5 erms值,其对总噪声的贡献将小于2%,可以合理地予以忽略。设计人员常会争论应当把该阈值选在哪里,但无论是1/3、1/5还是1/10 (分别使总噪声增加5%、2%和0.5%),在设计达到足以进行全面仿真或计算的程度之前,没必要担心低于该阈值的较小噪声源。

4.直流耦合电路中必须始终考虑1/f噪声

1/f噪声对超低频率电路是一大威胁,因为许多常用噪声抑制技术,像低通滤波、均值和长时间积分等,对它都无效。然而,许多直流电路的噪声是以白噪声源为主,1/f噪声对总噪声无贡献,因而不用计算1/f噪声。为了弄清这种效应,考虑一个放大器,其1/f噪声转折频率fnc为10 Hz,宽带噪声为10 nV/√Hz。对于各种带宽,计算10秒采集时间内包含和不含1/f噪声两种情况下的电路噪声,以确定不考虑1/f噪声的影响。当带宽为fnc的100倍时,宽带噪声开始占主导地位;当带宽超过fnc的1000倍时,1/f噪声微不足道。现代双极性放大器可以具有比10 Hz低很多的噪声转折频率,零漂移放大器则几乎完全消除了1/f噪声。

5. 因为1/f噪声随着频率降低而提高,所以直流电路具有无限大噪声

虽然直流对电路分析是一个有用的概念,但真实情况是,如果认为直流是工作在0 Hz,那么实际上并不存在这样的事情。随着频率越来越低,趋近0 Hz,周期会越来越长,趋近无限大。这意味着存在一个可以观测的最低频率,哪怕电路在理论上是直流响应。该最低频率取决于采集时长或孔径时间,也就是观测器件输出的时长。如果一名工程师开启器件并观测输出100秒,则其能够观测到的最低频率伪像将是0.01 Hz。这还意味着,此时可以观测到的最低频率噪声也是0.01 Hz。

现在通过一个数值例子来展开说明,考虑一个DC至1 kHz电路,连续监控其输出。如果在前100秒观测到电路中一定量的1/f噪声,从0.01 Hz至1 kHz(5个十倍频程的频率),则在30年(约1nHz,12个十倍频程)中观测到的噪声量可计算为√12/5 = 1.55,或者说比前100秒观测到的噪声多55%。这种增加几乎没有任何意义,即使考虑最差情况——1/f噪声持续增加到1 nHz(目前尚无测量证据)——也是如此。理论上,如果没有明确定义孔径时间,1/f噪声可以计算到一个等于电路寿命倒数的频率。实践中,电路在如此长时间内的偏差以老化效应和长期漂移为主,而不是1/f噪声。许多工程师为直流电路的噪声计算设定0.01 Hz或1 mHz之类的最低频率,以使计算切合实际。

全部回复(3)
正序查看
倒序查看
k6666
LV.9
2
2021-03-26 16:47
给定足够长的采集时间,均值法可将噪声降至无限小,其实不是。
0
回复
k6666
LV.9
3
2021-03-26 16:47
@k6666
给定足够长的采集时间,均值法可将噪声降至无限小,其实不是。
均值法可将噪声降低均值数的平方根倍。这在一定条件下是成立的,即NSD必须保持平坦。然而,在1/f范围内和其他几种情况下,这种关系不成立。考虑在一个以恒定频率fs采样的系统中使用均值法,对n个样本求均值并进行1/n抽取,返回m个抽取样本。取n个平均值会将抽取后的有效采样速率变为fs/n,系统看到的有效最大频率降低n倍,白噪声降低√n倍。然而,获得m个样本的时间也会延长n倍,因此系统可以看到的最低频率也会降低n倍(记住,没有0 Hz这种事)。取的均值数越多,频段上的这些最大和最小频率就越往下移。一旦最大和最小频率均在1/f范围内,总噪声便仅取决于这些频率之比,再提高均值数对降低噪声没有进一步的好处。同样的道理也适用于多斜率等积分ADC的长积分时间。除了数学上的限制以外,还存在其他实际限制。例如,若量化噪声是主要噪声源,使得直流输入电压下的ADC输出为一个无闪烁的恒定码,则任何数量的均值都会返回同一个码。
0
回复
阿飞啊
LV.5
4
2021-04-07 15:05
@k6666
均值法可将噪声降低均值数的平方根倍。这在一定条件下是成立的,即NSD必须保持平坦。然而,在1/f范围内和其他几种情况下,这种关系不成立。考虑在一个以恒定频率fs采样的系统中使用均值法,对n个样本求均值并进行1/n抽取,返回m个抽取样本。取n个平均值会将抽取后的有效采样速率变为fs/n,系统看到的有效最大频率降低n倍,白噪声降低√n倍。然而,获得m个样本的时间也会延长n倍,因此系统可以看到的最低频率也会降低n倍(记住,没有0Hz这种事)。取的均值数越多,频段上的这些最大和最小频率就越往下移。一旦最大和最小频率均在1/f范围内,总噪声便仅取决于这些频率之比,再提高均值数对降低噪声没有进一步的好处。同样的道理也适用于多斜率等积分ADC的长积分时间。除了数学上的限制以外,还存在其他实际限制。例如,若量化噪声是主要噪声源,使得直流输入电压下的ADC输出为一个无闪烁的恒定码,则任何数量的均值都会返回同一个码。
很有用的知识分享
0
回复