您好, 登录| 注册  
论坛导航
您好, 登录| 注册|
子站:
产品/技术
应用分类

从工业自动化应用的角度去深入解读机器学习

2020-05-29 11:24 来源:互联网 编辑:Emma

随着人工智能的问世,我们一直在智能这个话题不断深挖技术,无论是汽车电子领域还是机器人方面都有突飞猛进的进展。而我们今天的话题还是和机器学习挂钩,机器学习在商业应用有不少的案例。我们今天所阐述的是从工业自动化应用的角度去深入解读机器学习?

自动化工程师将了解到:英特尔® 至强® 可扩展处理器如何为高要求的机器学习工作负载提高性能和降低延迟 • 现成的英特尔® 至强® 可扩展处理器主板解决方案如何为现有的工业服务器提供高性能的升级途径 • 与英特尔® 至强® 处理器兼容的软件资源可以简化基于 AI 的系统开发

机器学习正在使工业自动化发生革命性的变化:协作机器人向人类工人学习制造流程,然后更高效地执行这些流程。 人工智能机器可自我诊断即将发生的组件故障并请求维护。 而这还仅仅是个开始。

当然,类似的应用将需要强大的计算能力。 这使得英特尔® 至强® 可扩展处理器(原代号为“Purley”)的推出成为AI 的重大里程碑。 每插槽高达 28 个内核以及采用全新英特尔® 高级矢量扩展 512(英特尔® AVX-512)指令,这些芯片相比上一代处理器在深度学习训练和推断方面的性能将提升 2.2 倍。

对于工业服务器而言,全新的网格互联架构、高速缓存内存设计、软件工具以及现成的主板解决方案(加快创建基于 AI 的应用)可以支持下一代的性能。

AVX-512:AI 重负荷设备

从 AI 的角度来看,英特尔® 至强可扩展处理器最重要的新特性是对于英特尔® AVX-512 指令的支持,相比上一代处理器,每周期的浮点运算次数翻倍。 尤其是,SIMD 指令集的新增指令专门用来加快处理 AI 和机器学习应用生成的计算密集型工作负载。

值得一提的是,这一吞吐量的提升并不以增加功耗为代价。 如图 1 所示,英特尔 AVX-512 提供了比以前的SIMD 扩展高得多的单位功率性能,

在同等功耗水平和较低的时钟速度上实现了更高的性能。还有一点需要指出,每个处理器内核有两个 512 位融合乘加 (FMA) 单元,使机器学习和 AI 算法最常见的运算之一实现加速。

当然,内核数量多必定有帮助。 新款芯片每个插槽支持高达 28 个内核,相比而言,上一代产品最多支持 24个内核。

从工业自动化应用的角度去深入解读机器学习

声明:本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原网站所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱:editor@netbroad.com。

微信关注
技术专题 更多>>
2020慕尼黑上海电子展
与世界无线连接5G商用年

头条推荐

2019慕尼黑上海电子展
客服热线
服务时间:周一至周五9:00-18:00
微信关注
免费技术研讨会
获取一手干货分享

互联网违法不良信息举报

Reporting Internet Illegal and Bad Information
editor@netbroad.com
400-003-2006