您好, 登录| 注册|
论坛导航
您好, 登录| 注册|
子站:
产品/技术
应用分类

详解LLC谐振变换器中MOSFET失效模式(一)

2019-04-15 14:02 来源:电源网综合 编辑:niko

1 摘要

提高功率密度已经成为电源变换器的发展趋势。为达到 这个目标,需要提高开关频率,从而降低功率损耗、系 统整体尺寸以及重量。对于当今的开关电源(SMPS)而 言,具有高可靠性也是非常重要的。零电压开关(ZVS) 或零电流开关(ZCS) 拓扑允许采用高频开关技术,可以 大限度地降低开关损耗。ZVS拓扑允许工作在高频开 关下,能够改善效率,能够降低应用的尺寸,还能够降 低功率开关的应力,因此可以改善系统的可靠性。LLC 谐振半桥变换器因其自身具有的多种优势逐渐成为一种 主流拓扑。这种拓扑得到了广泛的应用,包括高端服务 器、平板显示器电源的应用。但是,包含有LLC谐振半 桥的ZVS桥式拓扑,需要一个带有反向快速恢复体二极 管的MOSFET,才能获得更高的可靠性。

在功率变换市场中,尤其对于通信/服务器电源应用,不 断提高功率密度和追求更高效率已经成为具挑战性的 议题。对于功率密度的提高,普遍方法就是提高开关 频率,以便降低无源器件的尺寸。零电压开关(ZVS)拓 扑因具有极低的开关损耗、较低的器件应力而允许采用 高开关频率以及较小的外形,从而越来越受到青睐 。这些谐振变换器以正弦方式对能量进行处理,开 关器件可实现软开闭,因此可以大大地降低开关损耗和 噪声。在这些拓扑中,相移ZVS全桥拓扑在中、高功率 应用中得到了广泛采用,因为借助功率MOSFET的等效 输出电容和变压器的漏感可以使所有的开关工作在ZVS 状态下,无需额外附加辅助开关。然而,ZVS范围非常 窄,续流电流消耗很高的循环能量。近来,出现了关于 相移全桥拓扑中功率MOSFET失效问题的讨论。这种 失效的主要原因是:在低反向电压下,MSOFET体二极 管的反向恢复较慢。另一失效原因是:空载或轻载情况 下,出现Cdv/dt直通。在LLC谐振变换器中的一个潜在 失效模式与由于体二极管反向恢复特性较差引起的直通 电流相关。即使功率MOSFET的电压和电流处于安全工作区域,反向恢复dv/dt和击穿dv/dt也会在如启动、 过载和输出短路的情况下发生。

2 LLC谐振半桥变换器

LLC谐振变换器与传统谐振变换器相比有如下优势:

■宽输出调节范围,窄开关频率范围

■ƒ即使空载情况下,可以保证ZVS

■ƒ利用所有的寄生元件,来获得ZVS

LLC谐振变换器可以突破传统谐振变换器的局限。正是 由于这些原因,LLC谐振变换器被广泛应用在电源供电 市场。LLC谐振半桥变换器拓扑如图1所示,其典型波 形如图2所示。图1中,谐振电路包括电容Cr和两个与之 串联的电感Lr和Lm。作为电感之一,电感Lm表示变压器 的励磁电感,并且与谐振电感Lr和谐振电容Cr共同形成 一个谐振点。重载情况下,Lm会在反射负载RLOAD的作用 下视为完全短路,轻载情况下依然保持与谐振电感Lr串 联。因此,谐振频率由负载情况决定。Lr 和Cr决定谐振 频率fr1,Cr和两个电感Lr 、Lm决定第二谐振频率fr2,随 着负载的增加,谐振频率随之增加。谐振频率在由变压 器和谐振电容Cr决定的大值和小值之间变动,如公 式1、2所示。

详解LLC谐振变换器中MOSFET失效模式(一)

详解LLC谐振变换器中MOSFET失效模式(一)

3 LLC谐振变换器的失效模式

启动失效模式

详解LLC谐振变换器中MOSFET失效模式(一)

详解LLC谐振变换器中MOSFET失效模式(一)

图3和图4给出了启动时功率MOSFET前五个开关波形。 在变换器启动开始前,谐振电容和输出电容刚好完全放电。与正常工作状况相比,在启动过程中,这些空电容会使低端开关Q2的体二极管深度导通。因此流经开关 Q2体二极管的反向恢复电流非常高,致使当高端开关 Q1导通时足够引起直通问题。启动状态下,在体二极管 反向恢复时,非常可能发生功率MOSFET的潜在失效。 图5给出了LLC谐振半桥变换器启动时的简化波形。


图5给出了可能出现潜在器件失效的工作模式。在t0~t1时 段,谐振电感电流Ir变为正。由于MOSFET Q1处于导通 状态,谐振电感电流流过MOSFET Q1 沟道。当Ir开始上 升时,次级二极管D1导通。因此,式3给出了谐振电感 电流Ir的上升斜率。因为启动时vc(t)和vo(t)为零,所有的 输入电压都施加到谐振电感Lr的两端。这使得谐振电流剧增。

详解LLC谐振变换器中MOSFET失效模式(一)

在t1~ t 2时段,MOSFET Q1门极驱动信号关断,谐振电感 电流开始流经MOSFET Q2的体二极管,为MOSFET Q2产生 ZVS条件。这种模式下应该给MOSFET Q2施门极信号。由 于谐振电流的剧增,MOSFET Q2体二极管中的电流比正 常工作状况下大很多。导致了MOSFET Q2的P-N结上存储 更多电荷。

在t2~t3时段,MOSFET Q2施加门极信号,在t0~t1时段 剧增的谐振电流流经MOSFET Q2沟道。由于二极管D1 依然导通,该时段内谐振电感的电压为:

QQ20190415-142057

该电压使得谐振电流ir(t)下降。然而,

QQ20190415-142057

很小,并不足以在这个时间段 内使电流反向。在t3时刻,MOSFET Q2电流依然从源 极流向漏极。另外,MOSFET Q2的体二极管不会恢复,因为漏源极之间没有反向电压。下式给出了谐振 电感电流Ir的上升斜率:

详解LLC谐振变换器中MOSFET失效模式(一)

在t3~t4时段,谐振电感电流经MOSFET Q2体二极管续 流。尽管电流不大,但依然给MOSFET Q2的P-N结增加 储存电荷。

在t4~t5时段,MOSFET Q1通道导通,流过非常大的直 通电流,该电流由MOSFET Q2体二极管的反向恢复电 流引起。这不是偶然的直通,因为高、低端MOSFET正 常施加了门极信号;如同直通电流一样,它会影响到该 开关电源。这会产生很大的反向恢复dv/dt,有时会击穿 MOSFET Q2。这样就会导致MOSFET失效,并且当采 用的MOSFET体二极管的反向恢复特性较差时,这种失 效机理将会更加严重。

详解LLC谐振变换器中MOSFET失效模式(一)

QQ20190415-142346

QQ20190415-142425

过载失效模式

详解LLC谐振变换器中MOSFET失效模式(一)

图7给出了不同负载下LLC谐振变换器的直流增益特性 曲线。根据不同的工作频率和负载可以分为三个区域。 谐振频率fr1的右侧(蓝框)表示ZVS区域,空载时小 第二谐振频率fr2的左侧(红框)表示ZCS区域,fr1和fr2 之间的可能是ZVS或者ZCS,由负载状况决定。所以紫 色的区域表示感性负载,粉色的区域表示容性负载。图 8给出了感性和容性负载下简化波形。当开关频率 fs

QQ20190415-142553

MOSFET在零电流处关断。在MOSFET开通前,电流流 过另一个MOSFET的体二极管。当MOSFET开关开通, 另一个MOSFET体二极管的反向恢复应力很大。由于大 反向恢复电流尖峰不能够流过谐振电路,它将流过另一个MOSFET。这就会产生很大的开关损耗,并且电流和 电压尖峰能够造成器件失效。因此,变换器需要避免工 作在这个区域。

对于开关频率fs>fr1,谐振电路的输入阻抗为感性。 MOSFET电流在开通后为负,关断前为正。MOSFET开 关在零电压处开通。因此,不会出现米勒效应从而使开 通损耗小化。MOSFET的输入电容不会因米勒效应而 增加。而且体二极管的反向恢复电流是正弦波形的一部 分,并且当开关电流为正时,会成为开关电流的一部 分。因此,通常ZVS优于ZCS,因为它可以消除由反向 恢复电流、结电容放电引起的主要的开关损耗和应力。

图9给出了过载情况下工作点移动轨迹。变换器正常工 作在ZVS区域,但过载时,工作点移动到ZCS区域,并 且串联谐振变换器特性成为主导。过载情况下,开关电 流增加,ZVS消失,Lm被反射负载RLOAD完全短路。这 种情况通常会导致变换器工作在ZCS区域。ZCS(谐振 点以下)严重的缺点是:开通时为硬开关,从而导致 二极管反向恢复应力。此外,还会增加开通损耗,产生 噪声或EMI。

详解LLC谐振变换器中MOSFET失效模式(一)

详解LLC谐振变换器中MOSFET失效模式(二)

声明:本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原网站所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱:editor@netbroad.com。

微信关注
技术专题 更多>>
面对禁令,看华为如何奋起反击?
全方位解读新半导体材料

头条推荐

2019慕尼黑上海电子展
客服热线
服务时间:周一至周五9:00-18:00
微信关注
免费技术研讨会
获取一手干货分享

互联网违法不良信息举报

Reporting Internet Illegal and Bad Information
editor@netbroad.com
022-58392381