微软公司宣布不再支持你正在使用的 IE浏览器,这会严重影响浏览网页,请使用微软最新的Edge浏览器
厂商专区
产品/技术
应用分类

开关稳压电源DIY之硬软件设计

2015-10-22 09:47 来源:电源网综合 编辑:铃铛

由于能够方便快捷的获得多种等级不同的电源,开关稳压电源在近几年内迅速在电源设计市场拥有了一席之地。此外,开关稳压电源还拥有体积小、重量轻等特点,小编在上一篇文章当中为大家介绍了开关稳压电源的原理,在本文中,小编则为大家介绍开关稳压电源中的软件与硬件分析。

整体设计

开关稳压电源
图1 总体设计框图

单片机通过键盘控制电压的步进,经过单片机控制D/A提供一个参考电压,与输出电压的反馈分压进行比较,在TL494内部的电压误差放大器产生一个高或低电平,控制脉宽变化,来达到调整输出电压的变化,反复调整后使输出达到设定得值为止。参考电压输出后电压的反馈调节是由TL494自动调节的,调节速度快。

由于本设计对效率的要求比较高,所以在设计时尽量选用低功耗的单片机,而且单片机的外围电路要尽量少,本系统外围电路只有键盘,显示,和4个运放(A/DD/A集成在C8051F020内部),这样可以尽可能的提高效率。框图见图1


理论分析与参数计算

主回路器件的选择及参数设计

磁芯和线径选择。当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。电流或电压以频率较高的电子在导体中传导时,会聚集于总导体表层,而非平均分布于整个导体的截面积中。线径的选择主要由本系统的开关频率确定。开关频率越大,线径越小,但是所允许经过的电流越小,并且开关损耗增大,效率降低。本系统采用的频率为44K,查表得知在此频率下的穿透深度为0.3304mm,直径应为此深度的2倍,即为0.6608mm。选择的AWG导线规格为21#,直径为0.0785cm(含漆皮)。磁芯选择铁镍钼磁芯,该磁芯具有高的饱和磁通密度,在较大的磁化场下不易饱和,具有较高的导磁率、磁性能稳定性好(温升低,耐大电流、噪声小),适用在开关电源上。

控制电路设计与参数设计

控制电路选用TL494来产生PWM波形,控制开关管的导通,RtCt选择为10224K,频率为,为44KHz。软启动电路由14脚和4脚接电阻和电容来实现,通过充放电来实现。启动时间为(=10uFR=1K)。13号脚接地,采用单管输出,进一步降芯片内部功耗。

效率的分析

由于要求DC/DC变换器(控制器)都只能由Uin端口供电,不能另加辅助电源,所以单片机及一些外围电路消耗功耗要尽量的低。为此,在设计本系统时单片机采用低功耗单片机C8051F020,该系统集成了812A/D和两路12D/A.减少了外加A/DD/A的功耗。提高效率主要是要降低变换器的损耗,变换器的损耗主要有MOSFET导通损耗,MOSFET开关损耗MOSFET驱动损耗,二极管的损耗、输出电容的损耗,和控制部分的损耗,这些损耗可以通过降低开关频率等方法来降低。各级损耗的计算方法为:导通损耗、开关损耗、门级驱动损耗、二极管的损耗、输出电容的损耗。


保护电路设计与参数设计

康铜电阻的大小选择:康铜丝主要起两个作用,过流保护和测试负载电流。康铜丝接在整流输入地和负载地之间,越小越好,这样会使两个地之间的电压很小。但是如果太小由于干扰问题会造成过流保护的误判,并且对于后级运放的要求比较高,经过实验,选择0.1欧姆的电阻效果比较好。由于电阻太小,难以测量,所以先测得1欧姆的电阻,然后截取其长度的十分之一。

TL494片内有电流误差放大器。可用于过流保护。康铜电阻上的压降,与预先调好的值进行比较。若电流过大,输出高电平,阻止PWM信号产生,开关管处于关断状态,使输出电压降低,形成保护功能。一旦输出电压降低,导致输出电流降低,检测电压降低,电流误差放大器就会输出低电平,重新产生PWM波形,所以该电路具有自恢复功能。

数字设定及显示电路的设计:

由于在输出端采样时测得的反馈电压为输出电压的二十四分之一,即分压为1.5V时输出为36V,分压为1.25V时输出为30V,设计中采用了12D/A转换精度为0.61mV(参考电压为2.43V),直接输出给TL494提供参考电压。此外还设置了三个A/D芯片,分别采集输出电压,输出电流,和输入电流。为了降低功耗,设计中采用了8位数字显示的LCDSMS0801B为共阴级,下降沿有效,可显示采样得到的各个采样量。

硬件核心电路如下:

开关稳压电源
图2 DC-DC主回路原理图

本文对于开关稳压电源的硬件与软件设计进行了非常全面的介绍,将其中各个知识节点分门别类的罗列讲解,是对于新手来说是非常值得阅读的一篇文章,希望大家在读过本文之后能够有所收获。

声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。

相关阅读

微信关注
技术专题 更多>>
研发工程师的工具箱
智慧生活 创新未来

头条推荐

电子行业原创技术内容推荐
客服热线
服务时间:周一至周五9:00-18:00
微信关注
获取一手干货分享
免费技术研讨会
editor@netbroad.com
400-003-2006