IGBT 的工作原理是什么 ?
IGBT的等效电路如图 1 所示。由图 1 可知知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若 IGBT 的栅极和发射极之间电压为 0V,则 MOSFET截止,切断PNP 晶体管基极电流的供给,使得晶体管截止。
由此可知,IGBT的安全可靠与否主要由以下因素决定:
——IGBT栅极与发射极之间的电压;
——IGBT集电极与发射极之间的电压;
——流过 IGBT集电极-发射极的电流;
——IGBT的结温。
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过 IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 绝缘栅极双极型晶体管 绝缘栅极双极型晶体管 绝缘栅极双极型晶体管 绝缘栅极双极型晶体管
IGBT 的工作特性包括静态和动态两类:
1 .静态特性:IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
IGBT 的伏安特性是指以栅源电压 Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压 Ugs的控制,Ugs越高,Id越大。它与 GTR 的输出特性相似.也可分为饱和区 1 、放大区 2 和击穿特性 3 部分。在截止状态下的 IGBT ,正向电压由 J2 结承担,反向电压由 J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入 N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了 IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流 Id与栅源电压 Ugs之间的关系曲线。它与 MOSFET的转移特性 相同,当栅源电压小于开启电压 Ugs(th) 时,IGBT 处于关断状态。在 IGBT 导通后的大部分漏极电流 范围内,Id与 Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为 15V 左右。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的 PNP晶体 管为宽基区晶体管,所以其 B值极低。尽管等效电路为达林顿结构,但流过 MOSFET 的电流成为 IGBT 总电流的主要部分。此时,通态电压 Uds(on) 可用下式表示
Uds(on) = Uj1 + Udr + IdRoh
式中 Uj1 —— JI 结的正向电压,其值为 0.7 ~ IV ;
Udr ——扩展电阻 Rdr 上的压降;
Roh ——沟道电阻。
通态电流 Ids 可用下式表示:
Ids=(1+Bpnp)Imos
式中 Imos ——流过 MOSFET 的电流。
由于 N+区存在电导调制效应,所以 IGBT 的通态压降小,耐压 1000V 的 IGBT 通态压降为 2~3V 。
IGBT 处于断态时,只有很小的泄漏电流存在。
2 .动态特性 IGBT 在开通过程中,大部分时间是作为 MOSFET 来运行的,只是在漏源电压 Uds
下降过程后期, PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri 为电流上升时间。实际应用中常给出的漏极电流开通时间 ton 即为 td(on)tri 之和。漏源电压的下降时间由tfe1 和 tfe2 组成,如图 2 - 58 所示
IGBT在关断过程中,漏极电流的波形变为两段。因为 MOSFET 关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间, td(off)为关断延迟时间, trv为电压 Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间 Tf由图 2 - 59 中的 t(f1)和 t(f2)两段组成,而漏极电流的关断时间
t(off)=td(off)+trv 十 t(f) ( 2 - 16 )
式中, td(off) 与 trv 之和又称为存储时间。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |