

General Description

QX6102 is a built-in NPN Buck type constant-current LED driver with high precision and self-powered. It is suited AC 85V~265V non-isolated LED driver supply.

QX6102 uses self-powered structure, and need no auxiliary winding, with built-in NPN, which can improve cost performance.

QX6102 adopts patented high end current detect, fixed frequency, current mode PWM control techniques, and has excellent line regulation and load regulation.

QX6102 has frequency shuffling function which can improve EMI performance. With internal loop and slope compensation, QX6102 needs no external compensation, which makes the application design easier.

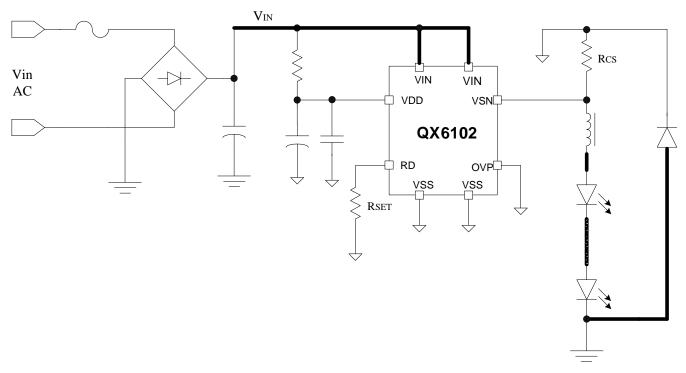
QX6102 has several protect functions, including LED open/short protect, OCP, UVLO, OVP, power clamp and so on.

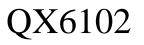
Features

- Built-in NPN power transistor
- Self-powered: no need auxiliary winding
- > LED output current precision: $\pm 3\%$
- ➢ High Efficiency: Up to 93%
- Current mode PWM control
- Fixed operating Frequency
- Frequency shuffling
- Built-in loop compensation and slope compensation
- LED open/short protect
- UVLO protect
- Packages: DIP8 and SOP8

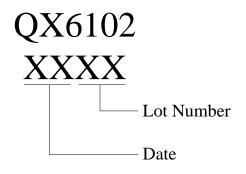
Applications

- LED fluorescent lamp
- Other LED light

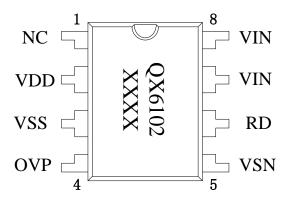


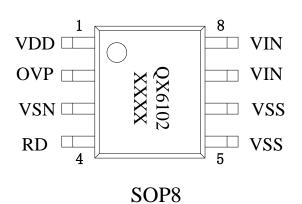

Figure 1: Typical Application Circuit Diagram 1 of QX6102 (without output capacitor)

Typical Application

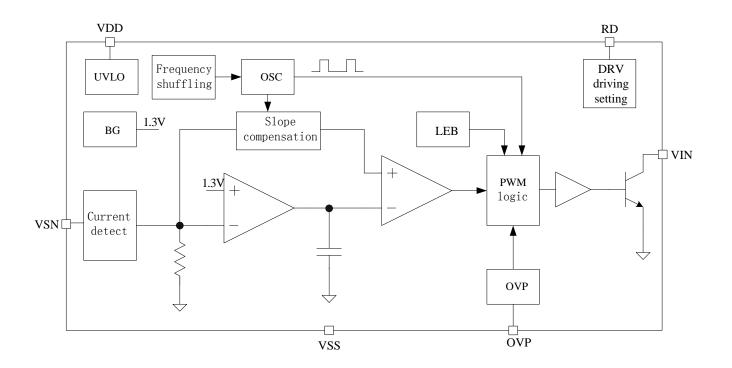


Ordering Information


Type Number


Package Marking

Pin Assignment



QX6102_DS09EN

Pin Description

Package and pin		Din Nama	Din Truce	Description	
DIP8	SOP8	Pin Name	Pin Type	Description	
1	-	NC	NC	No connection	
2	1	VDD	Supply	Power Supply	
3	5,6	VSS	Ground	Ground	
4	2	OVP	Input	LED over voltage detect terminal	
5	3	VSN	Input	Connect current sampling resistor	
6	4	RD	Input	Connect resistor, setting NPN base current	
7, 8	7,8	VIN	Input	Collector of Built-in NPN, connect to bus voltage	

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Description		Max	Unit
V-lt	V	Maximum Voltage On VIN Pin		400	V
Voltage	V _{MAX}	Maximum Voltage On Other Pins	-0.3	6	V
Current	I _{DD_MAX}	Maximum Current On VDD Pin		15	mA
Current	I _{VIN}	Maximum Current On VIN Pin		1500	mA
Power	P _{DIP8}	Maximum Power Dissipation for DIP8 Package		1	W
Dissipation	P _{SOP8}	Maximum Power Dissipation for SOP8 Package		0.75	W
	T _A	Operating Temperature Range		85	°C
	T _{STG}	Storage Temperature Range	-40	125	°C
Temperature	T _{SD1}	Soldering Temperature Rang for SOP8 Package (less than 30 sec)	230	240	°C
	T _{SD2}	Soldering Temperature Rang for DIP8 Package (less than 5 sec)	250	260	°C
ESD	V _{ESD}	ESD Voltage for Human Body Mode		2000	V

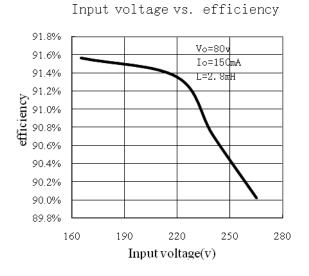
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electronic Characteristics

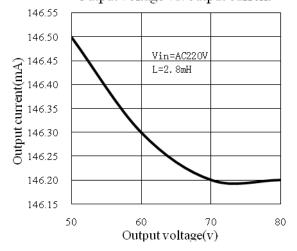
 V_{DD} =5V, T_A =25 °C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage		<u> </u>		•		-
Operating Voltage	V _{DD}			5		v
Threshold of start voltage	V _{DD_ON}	V _{DD} rises up	4.8	5	5.2	v
Threshold of UVLO	V _{DD_UVLO}	V _{DD} falls down	3.8	4	4.2	V
Clamp Voltage of VDD	V _{DD_CLAMP}			5.5		v
Supply Current						
Start-up Current	I _{STARTUP}	$V_{DD} = 4V$		40		uA
Standby Current	I _{STANDBY}	$V_{OVP} = 0V,$ $R_{SET} = 68K\Omega$		1.1		mA
Current Sensing				·		
Average Voltage of Current Detect Resistor	V _{SEN}		194	200	206	mV
Limit of V _{SEN} Voltage	V _{SEN_LMT}			520		mV
LEB	T _{LEB}			350		ns
OSC Operation 1	Frequency					
Typical Operation Frequency	F _{OSC}			65		KHz
Range of Frequency Shuffling	ΔF _{OSC}		-3		3	%
NPN DRIVER		·				
Voltage of RD	V _{RD}		1.225	1.3	1.345	v
Base current of NPN	I _{DRV}	$R_{SET} = 68 K\Omega$		30		mA

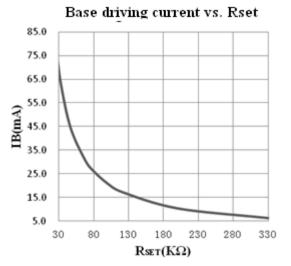
Electronic Characteristics (Continued)

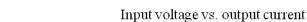

 V_{DD} =5V, T_A =25 °C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
OVP								
Threshold Voltage of OVP	V _{OVP_TH}			1.3		V		
OVP Clamp Voltage	X/	$I_{OVP} = 2mA$		5.7		V		
Ovr Clamp voltage	V _{OVP_CLAMP}	$I_{OVP} = -2mA$		-0.7		V		
Built-in NPN	Built-in NPN							
Voltage of C-E	V _{CEO}		400			V		
Current of Collector	I _C				1.5	А		
Gain of current	β	$V_{CE} = 5V$, $I_C = 0.2A$	15		30			
Current Application Range								
		SOP8 package, 8~24 LED in series	200		240	mA		
Output Current	I _O	DIP8 package, 8~24 LED in series	200		250	V V V V A		
		SOP8 & DIP8 ≥12 LED in series	120		200	mA		



Typical Electrical Curves


 $V_{IN} = 5V$, $T_A = 25$ °C, unless otherwise specified



Output voltage vs. output current

150 149 Output current(mA) 148 Vo=80v L=2.8mH 147 146 145 144 160 190 220 250 280 Input voltage(v)

Applications Information

Detailed Description

QX6102 is a BUCK type high precision LED constant current driver with built-in NPN power transistor and self powered function.

QX6102 uses special self-powered circuit, needs no auxiliary winding or other auxiliary power provider, which decrease peripheral elements and save system cost.

QX6102 adopts patented high end current detect, fixed frequency, current mode PWM control, and has excellent line regulation and load regulation.

QX6102 has frequency shuffling function which can improve EMI performance. With internal loop and slope compensation, QX6102 needs no external compensation, which makes the application design easier.

QX6102 has several protect functions, including LED open/short protect, OCP, UVLO, OVP, power clamp and so on.

IC Start Up

When QX6102 is powered on, the capacitor connected at VDD pin is charged by a resistor connecting to bus voltage. The IC consumes only 40uA current when the IC is in the under voltage lockout state. When the voltage of VDD is higher than start-up threshold V_{DD_ON} , the IC starts to work and the self-powered circuit provides current to the VDD pin. The built-in 5.5V clamp circuit is used to clamp VDD pin voltage.

LED Operation Current Setting

The LED current is determined by the resistor connected between the VSS and VSN pin with the formula below:

$$I_{LED} = \frac{V_{SEN}}{R_{CS}}$$

The typical value of V_{SEN} is 200mV.

The Driving Current Setting

The resistor R_{SET} connected at RD pin can be used to set the base current of the built-in NPN transistor. The base current of NPN should be set appropriate to the LED current set by R_{CS} , and the typical voltage of RD pin is 1.3V. When R_{SET} =68K Ω , the base current is about 30mA, which is corresponding to six to seven hundred milli-ampere of LED operation current. If higher current is needed, the R_{SET} should be decreased in proportion, and vice versa. The base current of NPN is determined by the formula bellow:

$$I_{DRV} = \frac{2100}{R_{SET}} (mA)$$

Open Circuit Protection

The LED open state protection is realized by resistors R1 and R2 connected to OVP pin. The threshold voltage of OVP pin is 1.3V, and LED open protection voltage is set by the formulas below:

$$V_{OVP} = \frac{R_1 + R_2}{R_1} * V_{OVP_TH}$$

And $50uA < \frac{V_{OVP}}{R_1 + R_2} < 500uA$

QX6102 detects the LED voltage when the POWER NPN is off. We normally set V_{OVP} voltage equal to output voltage V_{LED} times 1.2. When the voltage of LED reaches the protection threshold voltage, QX6102 will cut off the driving signal, until UVLO, then IC restart and redetect.

Short Circuit Protection

When LED is shorted, the system will decrease output frequency, and decrease input current at the same time. As long as the frequency decreases to a certain value, the system will get into UVLO, and then system restart.

Inductor Selection

For certain input voltage, output voltage and output current, the inductor value determines the current ripple of the inductor and the CCM or DCM mode. When system operates in BCM mode, the inductor value is:

$$Lcri = \frac{Vo*(Vi-Vo)}{2Vi*I_{LED}*fs}$$

When inductor value is about Lcri, the system will get better efficiency.

When the system use figure 1 without output capacitor, the inductor value should be larger value to ensure the system in CCM mode, and decrease the current ripple in LED. When the system uses figure 2 with output capacitor, the system can work both in CCM mode and DCM mode.

VDD Bypass Capacitor Selection

The bypass capacitor connected at the VDD to VSS should be low ESR, in order to ensure the IC work steadily and low voltage ripple. The 2.2~10uF good temperature characteristic ceramic capacitors are recommended. For the ESR will increase

sharply under low temperature, an extra 1uF ceramic capacitor or monolithic capacitor must be connected at VDD pin in order to prevent the start-up problem.

PCB Layout Design

When designing PCB layout, the following rules should be taken into consideration:

The bypass capacitors of VDD pin should be put beside the VDD and VSS of QX6102 as close as possible. X7R ceramic capacitors are proposed under low temperature.

The sampling resistor R_{CS} should be put close to the VSS pin of QX6102, and the wire should be short and wide.

The signals wiring should pay more attention to the following: the wire connected to VIN bus voltage, the wire between inductor and LED lamps, the VSS of LED. Those wires should prevent from too close to QX6102, and avoid parallel wiring with low voltage signals out from QX6102, which are shown in figure 1 and figure 2.

Decrease the layout area of power loop, which can decrease the EMI.

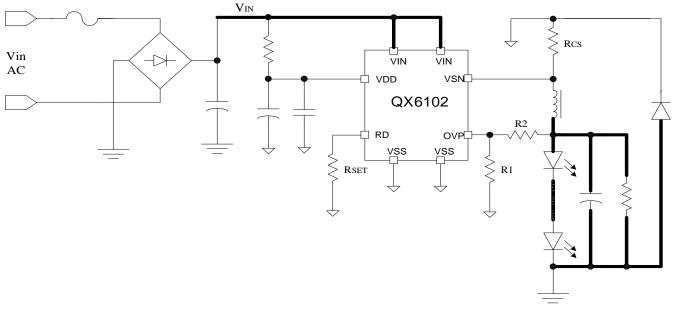
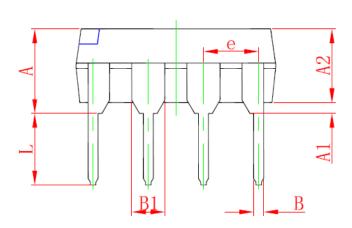
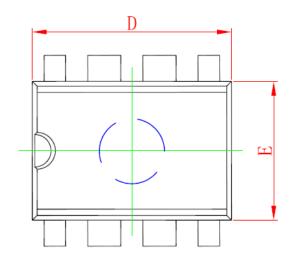
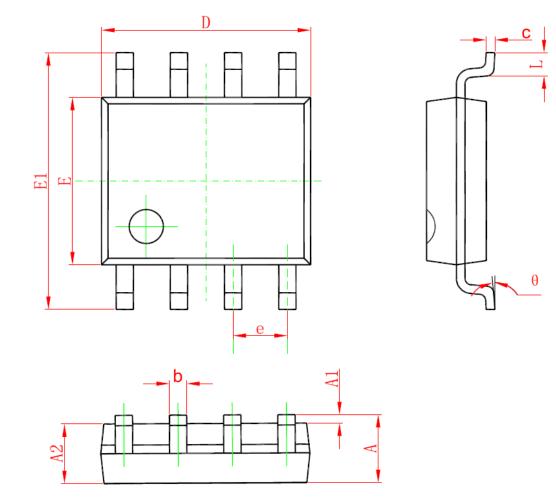



Figure 2: Typical Application Circuit Diagram 2 of QX6102 (with output capacitor)



Package Information

Physical Dimensions for DIP8 Package:



Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
С	0. 204	0. 360	0. 008	0. 014	
D	9.000	9.400	0. 354	0. 370	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7.920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9.000	0. 331	0. 354	

Physical Dimensions for SOP8 Package:

Cumb a l	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0. 053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.350	1.550	0. 053	0.061	
b	0. 330	0. 510	0.013	0. 020	
С	0.170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0.200	
E	3.800	4.000	0. 150	0. 157	
E1	5.800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0 °	8°	0 °	8°	

Declaration

- QXMD reserves the right to make changes to improve technical design and semiconductor products, and may do so without further notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
- QXMD is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyers, when utilizing QXMD products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such QXMD products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that QXMD products are used within specified operating ranges as set forth in the most recent QXMD products specifications.

- The QXMD products listed in this document are intended for usage in consumer electronics applications. These QXMD products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of QXMD products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. QXMD cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a QXMD product. No circuit patent licenses are implied.

Customer Service Center

QX Micro Devices Co., Ltd.

Add: 4th Floor, Building 22, Zhiheng Hi-Tech Park, Nantou Guangkou 2nd Road, Nanshan, Shenzhen, Guangdong, China

ZIP Code: 518052

Tel: +86-0755-88852177

Fax: +86-0755-86350858

Web Site: www.qxmd.com.cn