反激式开关电源EMC调试(一)

1.1、反激式(Fly back) 开关电源工作原理

返驰式(Fly back)转换器又称单端反激式,或称Buck-Boost转换器。因其输出端是在原边MOS管关断时获取能量,故而得名。

工作原理:

工作过程分为两个阶段:原边MOS管ON期间和OFF期间。MOS管开通期间:Vin电压

加在变压器初级绕组上,此时变压器储能;次级整流二极管因承受反向电压而截止,电容C放电提供能量给负载。

MOS管关断期间:变压器初级绕组电压改变,初级绕组储存的能量释放到次级绕组,次级整流二极管导通,给电容C充电的同时提供能量给负载。    

          

1.2、反激式(Fly back)开关电源工作电流模式

如果按照反激式变压器在开关周期内的能量存储状态区分,则其基本工作模式可分为三种:电流连续模式(CCM)、电流断续模式(DCM)及电流临界模式(BCM),这三种模式中BCM模式其实为CCM模式与DCM模式特殊形态。

BCM模式:若在每个开关周期开始或结束时,反激变压器原边励磁电感所储存的能量刚好释放到0(对应的其内部的最小磁通也刚好为0),那么此时电源工作在BCM模式下。

CCM模式:若在每个开关周期开始或结束时,反激变压器原边励磁电感中最小磁通不为0,那么电源工作在CCM模式下,此时反激变压器励磁电感还有残余能量储存;从电流波形上来看,励磁电感中持续有电流流过,即反激变压器励磁电感中磁通持续存在,采用CCM模式可以有效降低开关管的电流应力,但需要较大的电感量。

DCM模式:若在每个开关周期开始或结束时,反激变压器原边励磁电感中最小磁通已经为0,那么电源工作在DCM模式下,此时反激变压器励磁电感储存的能量完全释放掉;从电流波形上来看,励磁电感中有一定时间内无电流流过,即反激变压器励磁电感中磁通在一定时间内消失,只有反激变压器原边漏感中存在磁通,励磁电感失去箝位作用,励磁电感感量与开关管D-S极间电容会产生LC振荡,振荡频率由励磁电感感量与开关MOS管D-S极电容共同决定。    

断续模式(DCM)原边电流/电压波形

1.3、反激式(Fly back) 开关电源EMI干扰源分析

   

反激MOS管D极电压波形与D-S极电流波形

1.3.1、变压器漏感产生的电压尖峰与振荡

反激式架构开关电源EMI效果相对较差,尤其(断续模式)情形,反激MOS管在开通、关断时具有很宽的频谱份量,开关频率及谐波本身就是较强的干扰源。

在没有RCD吸收电路的情况下,反激MOS管关断,副边整流二极管导通时,原边的励磁电感被箝位,原边漏感LEP的能量通过MOS管寄生电容CDS进行放电,主放电回路为LEP -CDS -RS-大电解-LEP,此时产生振荡的频率为:    

其初始的振荡峰值决定于振荡电路的Q值,Q值越大,峰值就越大,Q值小,则峰值小。为了减小峰值,可减小变压器的漏感LEP,加大CDS 和电路的阻抗R,而加入Snubber电路是极有效之方法。

1.3.2、励磁电感产生的振荡

反激式MOS管关断,副边二极管由通转向关断,原边励磁电感被释放,CDS和原边电感的杂散电容为并联状态,再和原边电感LP(励磁电感+漏感之和)发生振荡,放电回路同样为LEP -CDS -RS-大电解-LEP,振荡频率为:

1.3.3、次级整流二极管开关噪声

整流二极管导通、关断时,具有很宽的频谱含量,开关频率及其谐波本身就是较强的干扰源。原边反激MOS管导通,次级整流二极管关断时,副边励磁电感被钳制,副边漏感LES和二极管杂散电容CJ发生振荡,其振荡频率为:

反激式MOS管关断,副边二极管由通转向关断,原边励磁电感被释放,CDS和原边电感的杂散电容为并联状态,再和原边电感LP(励磁电感+漏感之和)产生的振荡噪声,通过变压器耦合到次级,形成共模电流环路。    

1.3.4、电流环路噪声

原边MOS管开关回路:

开关回路主要由原边MOS管与变压器励磁电感组成,开关管与其散热片、金属外壳和电源内部布线间分布电容,产生的du/dt具有较大幅度的脉冲,频带较宽而且谐波丰富。开关管初级负载为变压器初级线圈,是感性负载。

当开关管关断时,变压器初级线圈产生了反电动势E=Ldi/dt,其值与MOS管漏极的电流变化率成正比,与漏感成正比。由漏感产生的电压尖峰迭加在MOS管D极关断电压上,导致传导问题和辐射问题。

    

变压器漏感产生的电压振铃波形

次级整流回路:

次级输出整流二极管截止时有一个反向电流,恢复到零点的时间与结电容等因素相关。它会在变压器漏感和其它分布参数的影响下产生很大的电流变化di/dt,引起较强的高频干扰,频率可达几十MHz,甚至百MHz,导致严重的辐射问题。

1.4、反激式(Fly back) 开关电源电流环路分析

1.4.1、原边MOS管开通电流环路:

原边MOS管Ton期间,电流环路路径:大电解正极变压器线圈输入变压器线圈输出开关MOS管RENSE电阻大电解负极。在原边MOS管Ton期间变压器原边线圈完成储能,开通环路如下图蓝色虚线所示。    

1.4.2、原边RCD吸收电流环路:

原边MOS管Toff期间,由于变压器初级线圈电流瞬间不能突变,初级线圈产生反向电动势抑制其电流突变。为抑制励磁电感产生尖峰电压对开关MOS管的冲击,RCD吸收电路被广泛应用。

原边MOS管Toff期间,RCD吸收电流环路路径:变压器初级线圈的输出引脚二极管串联电阻串联电容变压器初级线圈的输入引脚。原边MOS管Ton期间,通过并联在RC两端的电阻给电容放电,RCD吸收环路如下图黄色虚线部分所示。

1.4.3、原边RC吸收电流环路:

原边MOS管Toff瞬间,D极产生很高的开关电压尖峰,当开关电压尖峰超过MOS管电压硬力时,MOS管会因过电压硬力击穿损坏,MOS管动态dv/dt也是产生EMI问题的原因之一。RC吸收环路:MOS管D极电容电阻MOS管S极,RCD吸收环路如下图绿色的虚线部分所示。    

1.4.4、原副边高频耦合环路:

从理论上讲反激变压器可以隔离初次级之间的耦合,实际上由于绕组之间的寄生电容

的存在,以及原副边寄生电容的存在,初次级之间存在容性耦合。由于变压器漏感的存在,初次级线圈之间也存在互感,即感性耦合,初次级之间的高频耦合如红色虚线部分所示。

1.4.5、次级电流环路分析:    

根据反激拓扑结构的工作原理可知,原边开关MOS管Toff期间,次级整流二极管导通,导通后电流环路如下图紫红色方框所示。而当原边开关MOS管Ton期间,次级整流二极管处于关断状态,其RC吸收环路如下图黑色方框部分所示。

1.4.6、原边开关MOS管与散热片形成的寄生电流环路:

MOS管散热片接地前的共模电流路径:

开关MOS管的散热片悬空时,开关MOS管与其散热片之间的分布电容,散热片与参考地(PE地)之间的分布电容,串联起来构成高频电流环路。传导测试时,高频电流在机台接PE地线时流过LISN,被检测到。同时,高频电流路径也为高频噪声辐射提供了耦合路径。    

MOS管散热片接地后的共模电流路径:

开关MOS管散热片接原边地时,散热片对PE参考地的分布电容被旁路,高频噪声被旁路回流到到原边MOS管的参考地,降低了传导测试时流过LISN上的高频电流。同时也缩小了高频电流的环路面积,降低了其高频噪声的空间辐射能力。

MOS管散热片接地优化设计:

开关MOS管散热片接原边地,解决了高频电流流过LISN的问题,同时也降低了散热片对PE参考地之间的电场,可以有效改善传导与辐射性能。由于散热片本体寄生电感,造成散热片接地后的电位差,形成新的电流环路,辐射能力受环路面积,及环路阻尼的影响;散热片接地到原边地之间的PCB布线寄生电感,散热片和MOS管之间分布电容形成的引起寄生LC振荡,都可以通过优化散热片接地设计解决,即散热片通过串联电阻后接地。    

声明:本内容为作者独立观点,不代表电子星球立场。未经允许不得转载。授权事宜与稿件投诉,请联系:editor@netbroad.com
觉得内容不错的朋友,别忘了一键三连哦!
赞 1
收藏 6
关注 28
成为作者 赚取收益
全部留言
0/200
成为第一个和作者交流的人吧