您好, 登录| 注册|
论坛导航
您好, 登录| 注册|
子站:
产品/技术
应用分类

反激式转换器工作原理以及反激电源实测波形分析

2019-05-20 15:30 来源:互联网 编辑:Janet

本文主要介绍反激式转换器工作原理,以及反激开关MOSFET源极流出的电流波形转折点的分析。

反激式转换器工作原理

图1为一个最简单的反激式转换器拓扑结构,并且包含以下寄生元件:

如初级漏电感、Mosfet的寄生电容和次级二极管的结电容。

反激式转换器工作原理以及反激电源实测波形分析

图1包含寄生元件的反激式转换器拓扑图

该拓扑源自一个升降压转换器,将滤波电感替换为耦合电感,如带有气隙的磁芯变压器,当主开关器件MOSFET导通时,能量以磁通形式存储在变压器中,并在MOSFET关断时传输至输出。由于变压器需要在MOSFET导通期间存储能量,磁芯应该开有气隙,基于这种特殊的功率转换过程,所以反激式转换器可以转换传输的功率有限,只是适合中低功率应用,如电池充电器、适配器和DVD播放器。

反激式转换器在正常工作情况下,当MOSFET关断时,初级电流(id)在短时间内为 MOSFET的Coss(即Cgd+Cds)充电,当Coss两端的电压Vds超过输入电压及反射的输出电压之和(Vin+nVo)时,次级二极管导通,初级电感Lp两端的电压被箝位至nVo。因此初级总漏感Lk(即Lkp+n2×Lks)和Coss之间发生谐振,产生高频和高压浪涌,MOSFET上过高的电压可能导致故障。

反激式转换器可以工作在连续导通模式(CCM)(如图2)和不连续导通模式(DCM)(如图3)下,当工作在CCM模式时,次级二极管保持导通直至MOSFET栅极导通,而MOSFET导通时,次级二极管的反向恢复电流被添加至初级电流,因此在导通瞬间初级电流上出现较大的电流浪涌;当工作在DCM模式时,由于次级电流在一个开关周期结束前干涸,Lp和MOSFET的Coss之间发生谐振。

反激式转换器工作原理以及反激电源实测波形分析

图2 连续导通模式

反激式转换器工作原理以及反激电源实测波形分析

图3 不连续导通模式

图4显示了开关电源工作在DCM模式,实测的MOSFET电压和电流工作波形,除了可以看到MOSFET在开通和关断的过程中,均产生比较大的电压和电流变化,而且可以看到MOSFET在开通和关断的瞬间,产生一些震荡和电流尖峰。

反激式转换器工作原理以及反激电源实测波形分析

如图1所示的包含寄生元件的反激式转换器拓扑图,其中Cgs、Cgd和 Cds分别为开关管MOSFET的栅源极、栅漏极和漏源极的杂散电容,Lp、Lkp、Lks和Cp分别为变压器的初级电感、初级电感的漏感、次级电感的漏感和原边线圈的杂散电容,Cj为输出二极管的结电容。图5为反激变换器工作在DCM工作模式时,开关管分别工作在(a)开通瞬间、 (b)开通阶段、 (c)关断瞬间和(d)关断阶段时,所对应的等效分析电路,Rds为开关管的漏源极等效电阻。

反激式转换器工作原理以及反激电源实测波形分析反激式转换器工作原理以及反激电源实测波形分析

图5 反激变换器在DCM模式开关管工作在各阶段对应的等效分析电路

在开关管开通瞬间,由于电容两端电压不能突变,杂散电容Cp两端电压开始是上负下正,产生放电电流,随着开关管逐渐开通,电源电压Vin对杂散电容Cp充电,其两端电压为上正下负,形成流经开关管和Vin的电流尖峰;同时Cds电容对开关管放电,也形成电流尖峰,但是此尖峰电流不流经Vin,只在开关管内部形成回路;另外,如果变换器工作在CCM模式时,由于初级电感Lp两端电压缩小,二极管D开始承受反偏电压关断,引起反向恢复电流,该电流经变压器耦合到原边侧,也会形成流经开关管和Vin的电流尖峰。

在开关管开通阶段,二极管D截止,电容Cp两端电压为Vin,通过初级电感Lp的电流指数上升,近似线性上升。

在开关管关断瞬间,初级电流id为Coss充电,当Coss两端的电压超过Vin与nVo(二极管D开通时变压器副边线圈电压反射回原边线圈的电压)之和时,二极管D在初级电感Lp续流产生的电压作用下正偏开通,Lk和Coss发生谐振,产生高频震荡电压和电流。

在开关管关断阶段,二极管D正偏开通,把之前存储在Lp中的能量释放到负载端,此时副边线圈电压被箝位等于输出电压Vo,经匝比为n的变压器耦合回原边,使电容Cp电压被充电至nVo(极性下正上负),初级电感Lp两端的电压被箝位至nVo。当Lp续流放电结束后,D反偏截止,Lp和Coss、Cp发生谐振,导致Cp上的电压降低。

反激开关MOSFET 源极流出的电流(Is)波形的转折点的分析。

反激式转换器工作原理以及反激电源实测波形分析

很多工程师在电源开发调试过程中,测的波形的一些关键点不是很清楚,下面针对反激电源实测波形来分析一下。

问题一,一反激电源实测Ids电流时前端有一个尖峰(如下图红色圆圈里的尖峰图),这个尖峰到底是什么原因引起的?怎么来消除或者改善?

反激式转换器工作原理以及反激电源实测波形分析反激式转换器工作原理以及反激电源实测波形分析反激式转换器工作原理以及反激电源实测波形分析反激式转换器工作原理以及反激电源实测波形分析

经分析,知道此尖峰电流是变压器的原边分布参数造成,所以要从原边绕线层与层指尖间着手,可以加大间隙来减少耦合,也可以尽量设计成单层绕组。

例如变压器尽量选用Ae值大的,使设计时绕组圈数变少减少了层数,从而使层间电容变小。也可减少线与线之间的接触面,达到减少分布电容的目的。如三明治绕法把原边分开对此尖峰有改善,还能减少漏感。当然,无论怎样不能完全避免分布电容的存在,所以这个尖峰是不能完全消除的。并且这个尖峰高产生的振荡,对EMI不利,实际工作影响倒不大。但如果太高可能会引起芯片过流检测误触发。

所以电源IC内部都会加一个200nS-500nS的LEB time,防止误触发,就是我们常说的消隐。

问题二,开关MOS关端时,IS电流波形上有个凹陷(如下图红色圈内的电流波形的凹陷)这是怎么回事?怎么改善?

反激式转换器工作原理以及反激电源实测波形分析

说这个原因之前先对比下mos漏极电流Id与mos源极电流Is的波形。

实测Id波形如下

反激式转换器工作原理以及反激电源实测波形分析

反激式转换器工作原理以及反激电源实测波形分析

从上面的这两个图中看出,ID比IS大一点是怎么回事?其实Is是不等于Id的,Is=Id+Igs(Igs在这里是负电流,Cgs的放电电流如下图),那两点波形,就容易解释了。

反激式转换器工作原理以及反激电源实测波形分析

Id比Is大,是由于IS叠加了一个反向电流,所以出现Is下降拐点。显然要改善这个电流凹陷可以换开关MOS管型号来调节。

看了上面Id的电流波形后问题又来了,mos关断时ID的电流为何会出现负电流?如下图

反激式转换器工作原理以及反激电源实测波形分析

MOS关断时,漏感能量流出给Coss充到高点,即Vds反射尖峰的顶点上。到最高点后Lk相位翻转,Coss反向放电,这时电流流出,也就是Id负电流部份的产生。

反激式转换器工作原理以及反激电源实测波形分析

声明:本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原网站所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱:editor@netbroad.com。

微信关注
技术专题 更多>>
2019年慕尼黑上海电子展电源网直播报道
全方位解读新半导体材料

头条推荐

2019慕尼黑上海电子展
客服热线
服务时间:周一至周五9:00-18:00
微信关注
免费技术研讨会
获取一手干货分享

互联网违法不良信息举报

Reporting Internet Illegal and Bad Information
editor@netbroad.com
022-58392381